APS Seminar Series Argonne, February 24, 2006

The M&M of Optimization: Modeling and Methods

Sven Leyffer leyffer@mcs.anl.gov

Mathematics & Computer Science Division, Argonne National Laboratory

Optimization Applications

Basic Ingredient: Newton's Method

Optimization Modeling Languages

Other Flavours of Optimization

Conclusions

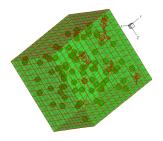
Optimization Applications Newton's Method Optimization Modeling Languages Other Flavours of Optimization Conclusions

OPTIMIZATION APPLICATIONS

Sven Leyffer

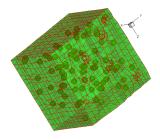
Optimal Mesh Smoothing [Munson]

- optimize quality of meshes for solving PDEs
- reposition vertices of mesh (no new elements)
- regular vs. optimal mesh: reduce solve time by 30% ≡ 10 hours!
- optimization solved in minutes



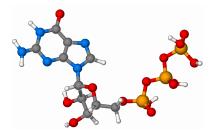
Optimal Mesh Smoothing [Munson]

- optimize quality of meshes for solving PDEs
- reposition vertices of mesh (no new elements)
- regular vs. optimal mesh: reduce solve time by 30% ≡ 10 hours!
- optimization solved in minutes



Molecular Geometry Optimization [Benson]

- molecule's functionality determined by geometry
 ⇒ fundamental problem in computational chemistry
- stable geometries \equiv least energy state
- TAO: parallel optimization in NWChem
 ⇒ 2× faster & more robust



• Interaction of power & NO_x allowance markets in Eastern US • California power crisis: NO_x over-consumption \Rightarrow price increases

- NO_x market: cap-and-trade program
 Controls ground-level ozone in summer
 Allowances distributed at start of cycle
 Generators redeem allowances
 to cover emissions
- \circ Secondary market for NO_x allowance

- \circ multi-level optimization \Rightarrow tough
- \circ Market shares: 6–19% of capacity
- Leader is largest company
- Cournot followers: influence price
- Price taking followers, ISO & arbitrager

 \circ multi-level optimization \Rightarrow tough

 \circ Market shares: 6–19% of capacity

Leader is largest company

 \circ Cournot followers: influence price

- \circ Price taking followers, ISO & arbitrager
- Engineering data: heat rates, emission rates, fuel costs
- 14 nodes, 18 arcs, and 5 periods; 6 larger companies \Rightarrow 20,000 vars and 10,000 cons

 \circ multi-level optimization \Rightarrow tough

 \circ Market shares: 6–19% of capacity

 \circ Leader is largest company

 \circ Cournot followers: influence price

- \circ Price taking followers, ISO & arbitrager
- Engineering data: heat rates, emission rates, fuel costs
- 14 nodes, 18 arcs, and 5 periods; 6 larger companies \Rightarrow 20,000 vars and 10,000 cons

leader exploits market power to drive up NO_x prices

Other Cool Applications

- Data assimilation in weather forecasting
- Image reconstruction from acoustic wave data
- Crew scheduling, vehicle routing
- Nuclear reactor core reloading
- Radio therapy treatment planning
- Oil field infrastructure design
- \Rightarrow wide range of applications; permeates scientific computing

Other Cool Applications

- Data assimilation in weather forecasting
- Image reconstruction from acoustic wave data
- Crew scheduling, vehicle routing
- Nuclear reactor core reloading
- Radio therapy treatment planning
- Oil field infrastructure design
- \Rightarrow wide range of applications; permeates scientific computing

... and even fun: optimization solves sudoku

Other Cool Applications

- Data assimilation in weather forecasting
- Image reconstruction from acoustic wave data
- Crew scheduling, vehicle routing
- Nuclear reactor core reloading
- Radio therapy treatment planning
- Oil field infrastructure design
- \Rightarrow wide range of applications; permeates scientific computing

... and even fun: optimization solves sudoku

ANL-MCS optimization: Anitescu, Moré, Munson & L

Nonlinear Optimization Problem

Nonlinear programming (NLP) problem

$$\left\{egin{array}{ccc} {
m minimize} & f(x) & {
m objective} \\ {
m subject to} & c(x) = 0 & {
m constraints} \\ & x \geq 0 & {
m variables} \end{array}
ight.$$

Assumptions:

- 1. x, c(x) finite dimensional
- 2. gradients (& Hessians) available
- 3. functions are smooth

Optimization Applications Newton's Method Optimization Modeling Languages Other Flavours of Optimization Conclusions

NEWTON'S METHOD

Sven Leyffer

Newton's Method

... everybody's favourite method for nonlinear equations ...

Solve F(x) = 0:

Get approx. x_{k+1} of solution of F(x) = 0 by solving linear model about x_k :

$$F(x_k) + \nabla F(x_k)^T(x - x_k) = 0$$

for k = 0, 1, ...

... converges quadratically near a solution ... most nonlinear solvers (IPM/SQP) based on this idea

Sequential Quadratic Programming (SQP)

Nonlinear optimization problem

$$\underset{x}{\text{minimize } f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \ge 0$$

repeat

1. Solve quadratic approx^{*n*} for (s, y_{k+1}, z_{k+1})

$$\begin{cases} \underset{s}{\text{minimize}} & \nabla f_k^T s + \frac{1}{2} s^T H_k s \\ \text{subject to} & c_k + \nabla c_k^T s = 0 & (\perp y_{k+1}) \\ & x_k + s \ge 0 & (\perp z_{k+1} \ge 0) \end{cases}$$

2. Set $x_{k+1} = x_k + s$, & k = k + 1

until convergence

Fast quadratic convergence near x^*

< 🗗 >

Modern Interior Point Methods (IPM)

General NLP

$$\underset{x}{\text{minimize } f(x) \quad \text{subject to } c(x) = 0 \quad \& \quad x \ge 0$$

Perturbed $\mu > 0$ optimality conditions $(x, z \ge 0)$

$$F_{\mu}(x, y, z) = \left\{ \begin{array}{c} \nabla f(x) - \nabla c(x)^{T}y - z \\ c(x) \\ Xz - \mu e \end{array} \right\} = 0$$

- Primal-dual formulation
- Central path $\{x(\mu), y(\mu), z(\mu) : \mu > 0\}$
- Apply Newton's method for sequence $\mu\searrow 0$

Modern Interior Point Methods (IPM)

repeat

1. Choose $\mu_k \searrow 0$ tol for $F_{\mu_k}(x,y,z) = 0$

2. Apply Newton to primal-dual system ...

$$\begin{bmatrix} \nabla^2 \mathcal{L}_k & -A_k & -I \\ A_k^T & 0 & 0 \\ Z_k & 0 & X_k \end{bmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta z \end{pmatrix} = -F_{\mu}(x_k, y_k, z_k)$$

where $A_k = \nabla c(x_k)^T$, X_k diagonal matrix of x_k .

3. Set
$$x_{k+1} = x_k + \Delta x$$
, ... & $k = k + 1$

until convergence

Path-following (homotopy) method Polynomial run-time guarantee for convex problems

Interior Point Methods (IPM)

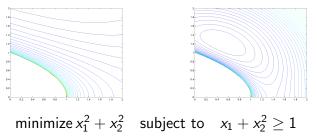
minimize
$$f(x)$$
 subject to $c(x) = 0$ & $x \ge 0$

Related to classical barrier methods [Fiacco & McCormick]

$$\begin{cases} \underset{x}{\text{minimize}} & f(x) - \mu \sum \log(x_i) \\ \text{subject to} & c(x) = 0 \end{cases}$$

 $\mu = 10$

$$\mu = 1$$



< 🗗 🕨

Sven Leyffer

The M&M of Optimization: Modeling and Methods

Interior Point Methods (IPM)

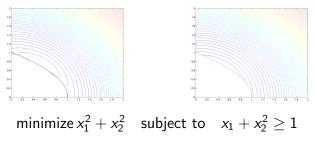
$$\underset{x}{\text{minimize } f(x) \text{ subject to } c(x) = 0 \quad \& \quad x \ge 0$$

Related to classical barrier methods [Fiacco & McCormick]

$$\begin{cases} \underset{x}{\text{minimize}} & f(x) - \mu \sum \log(x_i) \\ \text{subject to} & c(x) = 0 \end{cases}$$

 $\mu = 0.1$

 $\mu = 0.001$



< 🗗 🕨

Sven Leyffer

The M&M of Optimization: Modeling and Methods

Global Convergence of SQP/IPM

SQP & IPM converge quadratically "near" solution ... but diverge far from solution

convergence from remote starting points:

1. penalty function: $\pi > 0$ penalty parameter

$$\min_{x} \Phi(x,\pi) = f(x) + \pi \|c(x)\|$$

- equivalence of optimality \Rightarrow exact for $\pi > ||y^*||_D$
- nonsmooth \Rightarrow S ℓ_1 QP method
- 2. enforce descent in penalty function by ...
 - $2.1\,$ line-search $\ldots\,$ backtrack on SQP/IPM step:

$$x_k + \alpha \Delta x$$
 for $\alpha = 1, \frac{1}{2}, \dots$

2.2 restrict step with trust-region: $\|\Delta x\| \leq \rho_k$

< 🗇 >

Penalty function can be inefficient

- Penalty parameter not known a priori: $\pi > \|y^*\|_D$
- Large penalty parameter \Rightarrow slow convergence

Two competing aims in optimization:

- 1. Minimize f(x)
- 2. Minimize $h(x) := ||c(x)|| \dots$ more important

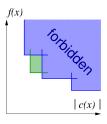
⇒ concept from multi-objective optimization: (h_{k+1}, f_{k+1}) dominates (h_l, f_l) iff $h_{k+1} \le h_l \& f_{k+1} \le f_l$

Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

• new x_{k+1} acceptable to filter \mathcal{F} , iff

1.
$$h_{k+1} \leq h_l \forall l \in \mathcal{F}$$
, or

2.
$$f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$$



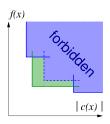
Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

• new x_{k+1} acceptable to filter \mathcal{F} , iff

1.
$$h_{k+1} \leq h_l \; \forall l \in \mathcal{F}$$
, or

2.
$$f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$$

remove redundant entries

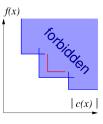


Filter \mathcal{F} : list of non-dominated pairs (h_l, f_l)

- new x_{k+1} acceptable to filter \mathcal{F} , iff
 - 1. $h_{k+1} \leq h_l \; \forall l \in \mathcal{F}$, or
 - 2. $f_{k+1} \leq f_l \ \forall l \in \mathcal{F}$
- remove redundant entries
- reject new x_{k+1} , if $h_{k+1} > h_l \& f_{k+1} > f_l$

... reduce trust region radius $\Delta = \Delta/2$

\Rightarrow often accept new x_{k+1} , even if penalty function increases



Nonlinear Optimization Software

- Augmented Lagrangian
 - LANCELOT: bound constrained; trust-region
 - MINOS: linearly constrained; line-search
 - PENNON: line-search or trust-region
- Sequential quadratic programming
 - FILTER: trust-region; no penalty function
 - KNITRO: trust-region; SLP-EQP ... options "alg=3";
 - SNOPT: line-search; ℓ_1 exact penalty function
- Interior point methods
 - KNITRO: trust-region; SQP on barrier problem
 - LOQO: line-search; diagonal perturbation
 - IPOPT: line-search; no penalty function

Optimization Applications Newton's Method Optimization Modeling Languages Other Flavours of Optimization Conclusions

MODELING LANGUAGES

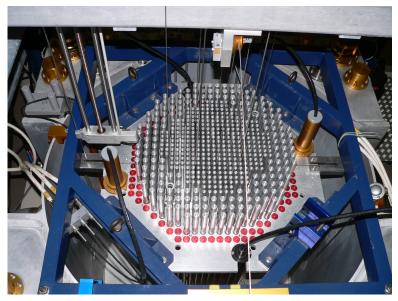
Sven Leyffer

The M&M of Optimization: Modeling and Methods

Optimization Modeling Languages

AMPL & GAMS

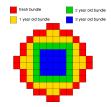
- high level languages for nonlinear optimization
- interpret problem description
- interface to solvers & returns results
- details of solver, derivatives & pre-solve are hidden from user
- modeling language (var, minimize, subject to, ...)
- programming language (while, if, ...)



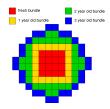
< 🗗 >

Sven Leyffer

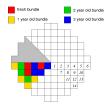
- simplified physics (neutron transport)
- maximize reactor efficiency after reload
- subject to diffusion process & safety
 ⇒ integer & nonlinear model
- avoid reactor becoming sub-critical



- simplified physics (neutron transport)
- maximize reactor efficiency after reload
- subject to diffusion process & safety
 ⇒ integer & nonlinear model
- avoid reactor becoming sub-critical
- avoid reactor becoming super-heated



- simplified physics (neutron transport)
- maximize reactor efficiency after reload
- subject to diffusion process & safety
 ⇒ integer & nonlinear model
- avoid reactor becoming sub-critical
- avoid reactor becoming super-heated
- look for cycles for moving bundles: e.g. 4 \rightarrow 6 \rightarrow 8 \rightarrow 10 means bundle moved from 4 to 6 to ...



- model with integer variables
 x_{ilm} ∈ {0, 1}
 = 1: node *i* has bundle *l* of cycle *m*
- exactly one bundle per node: $\sum_{l,m} x_{ilm} = 1 \qquad \forall i \in I$

AMPL:

- var x {I,L,M} binary ;
- B1{i in I}: sum{l in L, m in M} x[i,l,m] = 1;

www.mcs.anl.gov/~leyffer/MacMINLP/problems/c-reload.mod



Sven Leyffer

Online Optimization Tools

- solve optimization problems over internet
- connect applications & state-of-the-art solvers
- AMPL/GAMS ... input formats
- solvers for nonlinear optimization, integer, & many more!
- new NEOS-API (write software that submits jobs)
- ... and it's free!!! www-neos.mcs.anl.gov/neos/
- winner of the 2003 Beale-Orchard Hays Prize

Sven Leyffer

The M&M of Optimization: Modeling and Methods

Integer Nonlinear Optimization

Nonlinear optimization with integer variables

$$\begin{cases} \underset{x}{\text{minimize}} & f(x, y) & \text{objective} \\ \text{subject to} & c(x, y) = 0 & \text{PDE constraints} \\ & x \ge 0, \ y \in Y & \text{variables} \end{cases}$$

where $y \in Y$ integer, e.g. $\{0, 1\}$, or $\{0, 1, 2, ...\}$... Applications:

- Chemical Engineering: process synthesis, batch plant design, cyclic scheduling, design of distillation columns
- Topology optimization
- Blackout prevention in electrical power systems
- Design of nanoscale materials; accelerators ...

A Popular Integer Optimization Method

Dantzig's Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!

A Popular Integer Optimization Method

Dantzig's Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

- 1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- 2. Otherwise, solve the continuous relaxation (*NLP*) and round off the minimizer to the nearest integer.

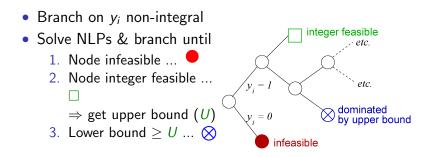
A Popular Integer Optimization Method

Dantzig's Two-Phase Method for MINLP Adapted by Leyffer and Linderoth

- 1. Convince the user that he or she does not wish to solve a mixed integer nonlinear programming problem at all!
- 2. Otherwise, solve the continuous relaxation (*NLP*) and round off the minimizer to the nearest integer.
 - Sometimes a continuous approximation to the discrete (integer) decision is accurate enough in practice.
 - Yearly tree harvest in Washington
 - For 0 1 problems, or those in which the |y| is "small", the continuous approximation to the discrete decision is not accurate enough for practical purposes.
 - Conclusion: MINLP methods must be studied!

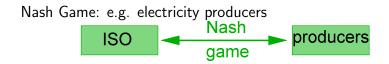
Branch-and-Bound

Solve relaxed NLP ($0 \le y \le 1$ continuous relaxation) ... solution value provides lower bound



Search until no unexplored nodes on tree

Nash & Stackelberg Games



Nash Game: non-cooperative equilibrium of several players

$$y_i^* \in \begin{cases} \operatorname{argmin} & b_i(\hat{y}) \\ y_i & \\ \operatorname{subject to} & c_i(y_i) \ge 0 \end{cases}$$
 player i

•
$$\hat{y} = (y_1^*, \ldots, y_{i-1}^*, y_i, y_{i+1}^*, \ldots, y_i^*)$$

• All players are equal

Nash & Stackelberg Games

Optimality conditions of Nash players ...

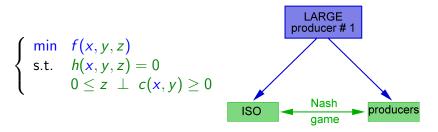
$$abla b(y) -
abla c(y)z = 0$$
 $0 \le z \perp c(y) \ge 0$

where

- $b(y) = (b_1(y), \ldots, b_k(y)) \& c(y) = (c_1(y), \ldots, c_k(y))$
- \perp means $z^T c(y) = 0$, either $z_i > 0$ or $c_i(y) > 0$
- Nonlinear complementarity problem (NCP)
- Robust large scale solvers exist: PATH [Munson]

Nash & Stackelberg Games

Single dominant player (leader) & Nash followers



Nash game parameterized in leader's variables x

Mathematical Program with Equilibrium Constraints (MPEC) ... ill-conditioned but [Anitescu, Munson & L] can do it!

Conclusions

Optimization is ubiquitous in science & engineering

- applications in engineering, operations research, games
- diverse modeling paradigms & tools exist
- large-scale nonlinear optimization tools

Open question: DOE optimization differ

- optimization over simulations (PDE, multiphysics)
- modeling languages not applicable?
 - ... how to transfer optimization expertise
 - ... how to transfer models/problems

THANKS FOR YOUR ATTENTION!